About me
I’m Li Shengzhou. Nowadays, I am a PhD student of Computer Science in University of Tsukuba. My research topic is “Data-Driven and Machine Learning Based Material Science Research” under the supervision of Pro. Nakata Ayako from NIMS and Pro. Sakurai Tetsuya from University of Tsukuba.
Interests
Educations
- Shanghai University (China), School of Computer Engineering and Science, Bachelor degree. (2012/09~2016/06)
- Shanghai University (China), School of Computer Engineering and Science, Master degree. (2016/09~2019/04)
- Northeast Normal University (China), Learning Japanese. (2019/10~2020/08)
- University of Tsukuba (Japan), Graduate School of Science and Technology, Degree Programs in Systems and Information Engineering, Doctoral Program in Computer Science. (2020/10~Now) (MEXT Scholarship)
Publications
- S Li, H Zhang, D Dai, G Ding, X Wei, Y Guo. Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning[J]. Journal of Alloys and Compounds, 2019, 782: 110-118.[DOI]
- W Zheng , H Zhang, H Hu, Y Liu, S Li, G Ding, J Zhang. Performance prediction of perovskite materials based on different machine learning algorithms[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(04): 803-809.[DOI](Chinese)
- Y Liu, H Zhang, Y Xu, S Li, D Dai, C Li, G Ding, W Shen, Q Qian. Prediction of Superconducting Transition Temperature Using A Machine-Learning Method[J]. Materiali in tehnologije, 2018, 52(5): 639-643.[DOI]
- H Zhang, G Zhou, S Li, X Fan, Z Guo, T Xu, Y Xu, X Chen, D Dai, Q Qian. Application of fuzzy learning in the research of binary alloys: Revisit and validation[J]. Computational Materials Science, 2020, 172: 109350.[DOI]
- D Dai, T Xu, H Hu, Z Guo, Q Liu, S Li, Q Qian, Y Xu, H Zhang. A New Method to Characterize Limited Material Datasets of High-Entropy Alloys Based on the Feature Engineering and Machine Learning[J]. Available at SSRN 3442010.[DOI]
Contact
Email: zhonger[at]live.cn (Please replace [at] with @.)
关于我
我是李盛洲,目前我正在筑波大学攻读计算机博士学位。我的导师是NIMS的中田彩子研究员和筑波大学的樱井铁也教授,我的主要研究方向是《基于数据驱动和机器学习的材料科学研究》。
研究兴趣
教育经历
- 上海大学(中国),计算机工程与科学学院,工学学士(2012年9月~2016年6月)
- 上海大学(中国),计算机工程与科学学院,工学硕士(2016年9月~2019年4月)
- 东北师范大学(中国),留日预备学校,日语学习(2019年10月~2020年8月)
- 筑波大学(日本),情报工学部(计算机科学),博士在读(2020年10月~至今)(文部科学省奖学金)
论文发表
- S Li, H Zhang, D Dai, G Ding, X Wei, Y Guo. Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning[J]. Journal of Alloys and Compounds, 2019, 782: 110-118.[DOI]
- W Zheng , H Zhang, H Hu, Y Liu, S Li, G Ding, J Zhang. Performance prediction of perovskite materials based on different machine learning algorithms[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(04): 803-809.[DOI](中文)
- Y Liu, H Zhang, Y Xu, S Li, D Dai, C Li, G Ding, W Shen, Q Qian. Prediction of Superconducting Transition Temperature Using A Machine-Learning Method[J]. Materiali in tehnologije, 2018, 52(5): 639-643.[DOI]
- H Zhang, G Zhou, S Li, X Fan, Z Guo, T Xu, Y Xu, X Chen, D Dai, Q Qian. Application of fuzzy learning in the research of binary alloys: Revisit and validation[J]. Computational Materials Science, 2020, 172: 109350.[DOI]
- D Dai, T Xu, H Hu, Z Guo, Q Liu, S Li, Q Qian, Y Xu, H Zhang. A New Method to Characterize Limited Material Datasets of High-Entropy Alloys Based on the Feature Engineering and Machine Learning[J]. Available at SSRN 3442010.[DOI]
联系我
邮箱:zhonger[at]live.cn (请使用@替换[at])